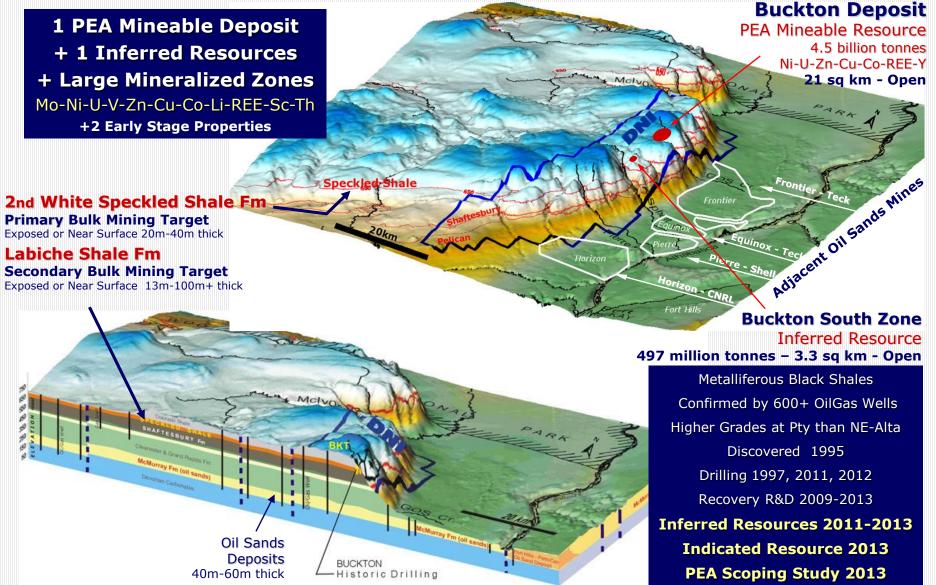

DNI METALS INC

Alberta Black Shale Metals Projects

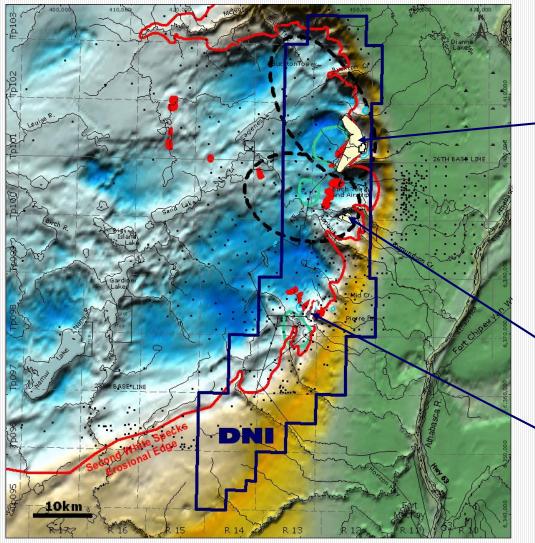
Mo - Ni - U - V - Zn - Cu - Co -Li - REE - Sc - Th - (Ag, Au)
Athabasca Region, Alberta, Canada - 1,200 sq km - DNI 100%

1 PEA Deposit + 2 Giant Bulk Mining Targets


1 PEA Level Deposit + 1 Inferred Resource - 1 Large Mineralized Zone
Buckton Deposit 4.5 billion tonnes PEA Mineable Resource
+ Buckton South Zone 497 million tonnes Maiden Inferred resource
+ Asphalt Zone Mineralization 125-151 million tons

Safe Harbour Statement

This presentation includes forward looking statements. While these statements represent our best current judgment, they are subject to risks and uncertainties that could cause actual results to vary. For further details, see NI-43-101 Technical Report and DNI's Annual Information Form available from SEDAR and on DNI's website www.dnimetals.com This presentation was prepared by S.Sabag, DNI's president and Qualified Person for the Alberta Black Shale Metals Projects


> DNI TSX-Ven

DNI Alberta Black Shale Metals Projects Six Polymetallic Properties - 2,720 sq km

1 Deposit + 1 Expanding Resource + Other Zones

Overall ~2,700 km² Property_ Six Prospective Zones Mo-Ni-U-V-Zn-Cu-Co-Li-REE-Sc-Th

100-300 sq km each

BUCKTON DEPOSIT

Partly Exposed + SEDEX 6 Resource Studies 2011-2013

Buckton Inferred Resource**

4.4 billion tonnes - 20.4 sq km

Buckton Indicated Resource**

0.27 billion tonnes - 1.5 sq km

Positive PEA Study 2013

4.5 billion tonnes - PEA Mineable Resource 64 yr Mine Life @ 72M tpa @ 0.5 Strip Ni-U-Zn-Cu-Co-REE-Y

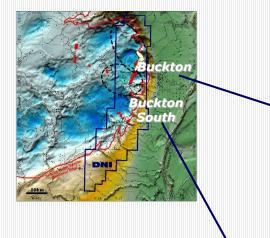
BUCKTON SOUTH ZONE

Initial Maiden Inferred Resource**

497 million tonnes - 3.3 sq km Open for 7 km Toward Buckton Deposit

ASPHALT ZONE

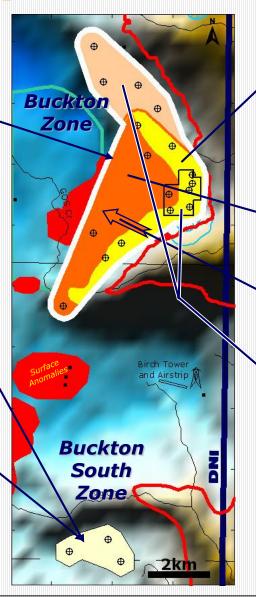
Mineralized Zone * 125-151 million short tons


~11m thick - 4.5 sq km

Partly Exposed - Open 6km to North & South Drill Tested 1997, 2011 +SEDEX Targets

* Per Section 2.3(2) of NI-43-101. The Asphalt "Mineralized Zone", previously named a "Potential Mineral Deposit", was renamed as a "Mineralized Zones", being a target for further exploration, to harmonize with amendments to NI-43-101 which came into effect on June 30, 2011. **Mineral resources are not mineral reserves and do not have demonstrated economic viability. There is no guarantee that all or any part of the mineral resource reported herein will be converted into a mineral reserve. An 'Inferred Mineral Resource' is that part of a Mineral Resource for which quantity and grade or quality can be estimated on the basis of geological evidence and limited sampling and reasonably assumed, but not verified, geological and grade continuity. The METALS estimate is based on limited information and sampling gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes. An 'Indicated Mineral Resource' is that part of a Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics, can be estimated with a level of confidence sufficient to allow the appropriate application of technical and economic parameters, to support mine planning and evaluation of the economic viability of the deposit. The estimate is based on detailed and reliable exploration and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes that are spaced closely enough for geological and grade continuity to be reasonably assumed.

Buckton Zone Expand & NEW Buckton South Zone



Buckton South Zone

Mo-Ni-U-V-Zn-Cu-Co-Li-REE-Sc-Th

NEW ZONE

Drill Confirmed 2012 Initial Inferred Resource 497 million tonnes 3.3 sq km - Open for 7 km+

Buckton Deposit

Ni-U-Zn-Cu-Co-REE-Y

Initial Inferred Resource 2011*

Mo-Ni-U-V-Zn-Cu-Co-Li in 2nd White Speckled Shale Formation 227 million tonnes

Supplemental Resource 2012*

REE-Sc-Th (contained in Initial Resource) in 2nd White Speckled Shale Formation

Labiche Cover Resource 2012*

Mo-Ni-U-V-Zn-Cu-Co-Li-REE-Sc-Th in Labiche Shale Formation 2.5 billion tonnes

Consolidated Resource Update 2013_{Jan*}

3.2 billion tonnes - 14 sq km

Two Stacked Black Shales (Labiche+Speckled) Mo-Ni-U-V-Zn-Cu-Co-Li-REE-Sc-Th

Resource Update & Expansion 2013 Aug* 4.4 billion tonnes - 20.4 sq km Inferred

271 million tonnes - 1.5 sq km Indicated Two Stacked Black Shales (Labiche+Speckled) Mo-Ni-U-V-Zn-Cu-Co-Li-REE-Sc-Th

Positive PEA Study 2013

4.5 billion tonnes Mineable Resource

64 year mine life @ 72M tonnes/year @ 0.5 Strip Two Stacked Black Shales (Labiche+Speckled) Ni-U-Zn-Cu-Co-REE-Y

~ 21 sa km - OPEN

*Property size and outline under revision

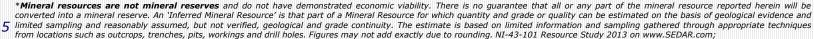
*Mineral resources are not mineral reserves and do not have demonstrated economic viability. There is no quarantee that all or any part of the mineral resource reported herein will be converted into a mineral reserve. An 'Inferred Mineral Resource' is that part of a Mineral Resource for which quantity and grade or quality can be estimated on the basis of geological evidence and 4 limited sampling and reasonably assumed, but not verified, geological and grade continuity. The estimate is based on limited information and sampling gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes.NI-43-101 Resource Study 2013 on www.SEDAR.com;

DNI Alberta Black Shale Metals Projects Buckton <u>South</u> Zone - Maiden Inferred Resource

Upper Portion - in Labiche Formation 369 million tonnes

	Recoverable Grades & (Quantities
	Grade (kg/tonne)	Metal/Oxide (kg)
MoO3	0.001	531,000
Ni	0.04	14,852,000
U308	0.00	1,415,000
V205	0.05	18,227,000
Zn	0.11	42,393,000
Cu	0.02	8,135,000
Co	0.01	3,925,000
Li2CO3	0.15	55,071,000
HREOY	0.05	16,657,000
LREO	0.03	11,271,000
TREOY	0.08	27,928,000
Sc203	0.01	2,591,000
ThO2	0.004	1,312,000

Lower Portion - in Speckled Shale Formation 128 million tonnes


	Recoverable Grades & 0	Quantities
	Grade (kg/tonne)	Metal/Oxide (kg)
MoO3	0.05	5,959,000
Ni	0.12	15,182,000
U3O8	0.03	3,578,000
V2O5	0.55	70,262,000
Zn	0.25	31,702,000
Cu	0.05	6,565,000
Co	0.02	2,374,000
Li2CO3	0.18	23,133,000
HREOY	0.15	19,543,000
LREO	0.08	10,204,000
TREOY	0.23	29,747,000
Sc203	0.01	1,237,000
ThO2	0.009	1,185,000

Buckton South Maiden Inferred Resource

Total Shale "Stacked" Zone
497 million tonnes

	Recoverable Grades &	Quantities
	Grade (kg/tonne)	Metal/Oxide (kg)
MoO3	0.01	6,490,000
Ni	0.06	30,034,000
U308	0.01	4,993,000
V205	0.18	88,489,000
Zn	0.15	74,095,000
Cu	0.03	14,700,000
Co	0.01	6,299,000
Li2CO3	0.16	78,204,000
HREOY	0.07	36,201,000
LREO	0.04	21,473,000
TREOY	0.12	57,674,000
Sc203	0.01	3,828,000
ThO2	0.01	2,497,000

- Two "Stacked" Black Shale Formations
- Extends over 3.3 km² OPEN for 7km
- Under <75m Cover
- at US\$11/tonne Base Cut-off Labiche Shale
- at US\$12.5/tonne Base Cut-off Speckled Shale

DNI Alberta Black Shale Metals Projects Buckton Deposit PEA - 72MM tpa - Mineable Resource

Buckton Mineral Resource - Grades, Tonnages and Metals Quantities									
Mineralized Shale - 4,544 million tonnes per PEA Optimized Pit Shell									
	Raw Grade Benchtests Recovery % Recoverable Recoverable					Projected			
	(ppm) per Resource	Recovery % per Resource	after Leaching and Processing	metal/oxide (tonnes)	metal/oxide (tonnes)	metal/oxide Production (tonnes/year)			
	ŕ	Study	Losses per PEA ⁽²⁾	per Resource Study	per PEA	per PEA			
Ni	67.6	64%	51%	162,375	156,208	2,441			
U_3O_8	10.8	70%	62%	31,415	30,043	469			
Zn	169.9	52%	48%	384,376	370,226	5,785			
Cu	40.3	25%	23%	43,663	42,041	657			
Co	15.4	72%	57%	41,380	39,872	623			
La ₂ O ₃	48.6	20%	15%	34,024	33,055	516			
Ce ₂ O ₃	84	30%	23%	90,166	87,563	1,368			
Pr ₂ O ₃	10.5	40%	30%	14,691	14,273	223			
Nd_2O_3	40.1	43%	33%	61,751	59,926	936			
Sm_2O_3	7.9	47%	36%	13,267	12,858	201			
Eu ₂ O ₃	1.7	61%	46%	3,550	3,442	54			
Gd_2O_3	6.7	63%	48%	14,968	14,510	227			
Tb ₂ O ₃	1	65%	49%	2,386	2,315	36			
Dy ₂ O ₃	5.9	65%	49%	13,578	13,185	206			
Ho ₂ O ₃	1.2	64%	48%	2,630	2,555	40			
Er ₂ O ₃	3.4	62%	47%	7,532	7,318	114			
Tm ₂ O ₃	0.5	60%	46%	1,104	1,072	17			
Yb ₂ O ₃	3.4	58%	44%	6,982	6,787	106			
Lu ₂ O ₃	0.5	55%	42%	1,066	1,035	16			
Y ₂ O ₃	40.4	67%	51%	96,106	93,094	1,455			

PEA Base Case Mineable Resource 4.5 billion tonnes

- PEA Resource Combines
 Inferred and Indicated Resources
- Aggregate PEA Min Resource is 94% Inferred Class Resource
- ~96% of Aggregate Min Resource is Mineable per PEA Pit Shell
- Two "Stacked" Black Shale Formations Labiche Formation, and Second White Speckled Shale
- Resource Extends over ~21 km²
- Base Cut-offs:
 US\$11/tonne Labiche Shale
 US\$12.5/tonne Speckled Shale

DNI Alberta Black Shale Metals Projects Buckton Deposit PEA - Two Mining Scenarios

Base Case

Second White Speckled Shale + Labiche Combined - 0.5:1 Strip
72MM tpa (200,000 tpd) - 64 yrs LOM - 4.5 billion tonnes
Ni-U-Zn-Cu-Co-REE-Y

(equiv to 100,000 barrel per day Oilsands Mining Operation)

Alternate Case

Second White Speckled Shale Only -ALL Else Remove as Waste - 6:1 Strip

36MM tpa (100,000 tpd) - 28 yrs LOM - 0.97 billion tonnes

Ni-U-Zn-Cu-Co-REE-Y

(equiv to 50,000 barrel per day Oilsands Mining operations)

DNI Alberta Black Shale Metals Projects Buckton Deposit PEA - Summary

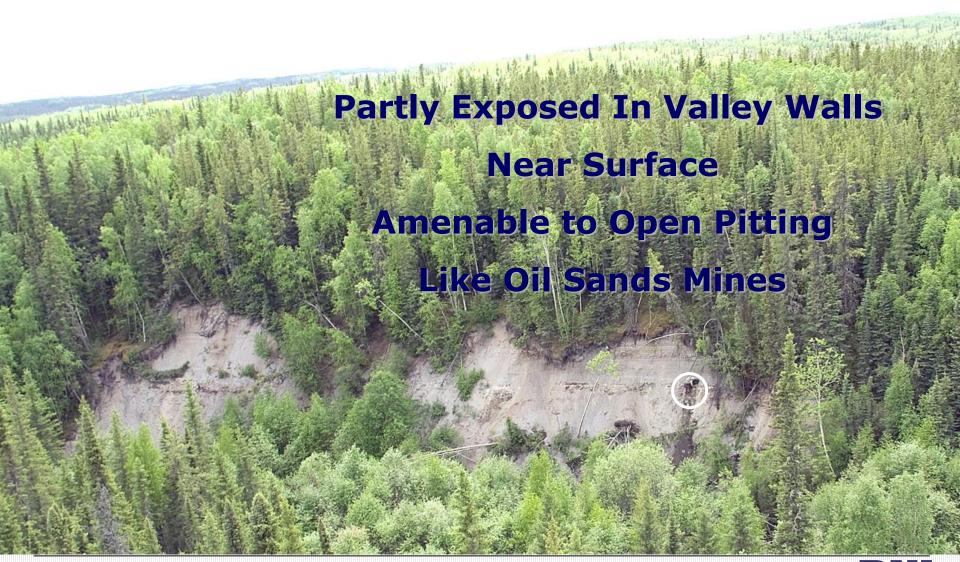
	Base Case	Alternate Case					
Mining Target	Second White Speckled Shale Formation	Second White Speckled Shale Formation Only					
	+ overlying Labiche Formation						
Final Products	Ni-Co-sulfide; Zn and Cu sulfides	Ni-Co-sulfide; Zn and Cu sulfides					
	U308 Yellowcake; Separated REE-Y Final Products	U3O8 Yellowcake; Separated REE-Y Final Products					
Mineable Mineral Resource	4,544 million tonnes	976 million tonnes					
Mining Rate	72 million tonnes per year	36 million tonnes per year					
Strip Ratio (waste:feed)	0.5	6.27					
Life of Mine	64 years	29 years					
Mining, Recovery & Processing	Open Pit Mining, Bioheapleaching	Open Pit Mining, Bioheapleaching					
	Hydromet + REE-separation	Hydromet + REE-separation					
Pre-production Capital Cost	\$3,766 million (incl \$477 million contingency)	\$3,077 million (incl \$426 million contingency)					
Operating Cost	\$ 10.3 per tonne	\$ 16.6 per tonne					
Gross In-Situ Recoverable Value	\$ 16.5 per tonne	\$ 26.6 per tonne					
Net Operating Margin (pre-tax)	\$ 6.2 per tonne	\$ 10.0 per tonne pre tax					
Payback	10.5 years	9.2 years					
Gross Revenues Over Life of Mine	\$ 75,000 million	\$ 26,000 million					
Total Cash Flow (NPV0%)	\$ 18,900 million pre tax (\$ 14,145 million after tax)	\$ 5,147 million pre tax (\$ 3,847 million after tax)					
NPV @ 6% Discount	\$ 1,616 million pre tax (\$ 904 million after tax)	\$ 640 million pre tax (\$ 273 million after tax)					
IRR (equity funded)	8.7% pre tax (7.7% after tax)	8.0% pre tax (7.0% after tax)					

Base Case Returned Better Economics than Alternate Case

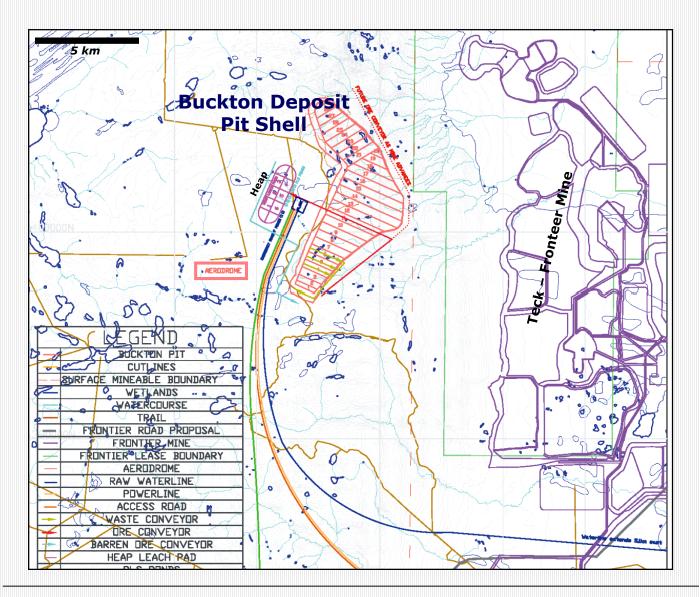
PEA Results Subject to Update per Additional DNI Testwork and Future Pilot Test

PEA Identified Opportunities for Strategic Economic Enhancements to Base Case

Some Near-Term Enhancements Achievable with Minimal Additional Work or per Recent Testwork


Eg: Reductions in Reagent Consumption; Reagent Sourcing; Key Operating Efficiencies; Updated Exchange Rate
-> Lower Opex to \$7.9/t - Lower Capex to \$3.4 billion

-> Higher NPV6% to \$4.2 billion - Higher IRR to 13.4% - Shorter Payback to 7yrs


Longer Term Enhancements: Optimized Mining Schedule; Optimized Leaching Conditions; Pre-Concentration

Mineralized Shale is Near or At Surface

Buckton Deposit PEA - Prelim Site Plan

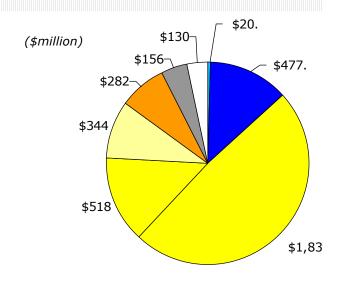
Open Pit Bulk Mining "Free-Dig"

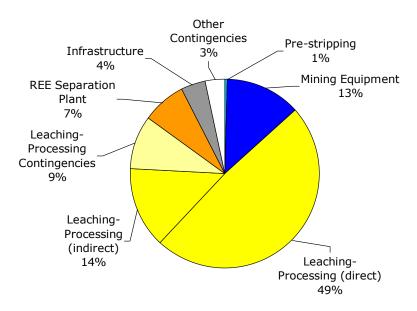
Large Cable Shovels
Conveyors

Run-of-Mine Feed

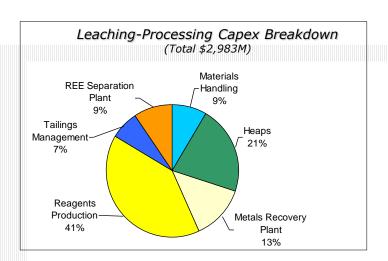
Mechanically Stacked 2x3km Leach Pad Piping & Aeration

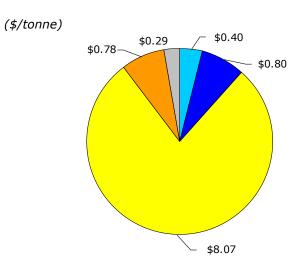
Airstrip - Water Line Power Line - Gas Line

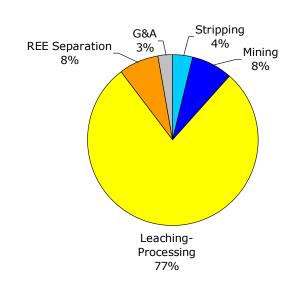

> Acid Plant Calcining Plant H₂S Plant


Logistical Synergies

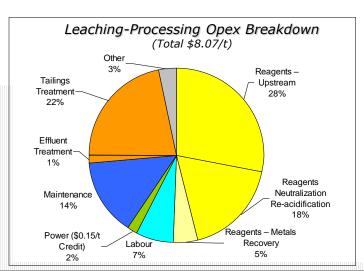
Adjacent Oil Sands Mining


Buckton Deposit PEA - 72MM tpa - Capex

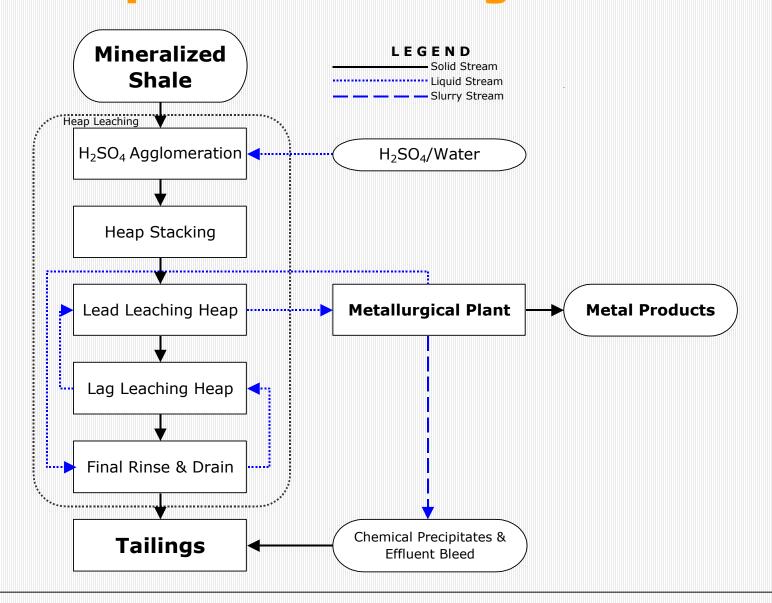

Pre-Production Capital Costs	(\$0	000,000)	
Pre-stripping	\$	20	
Mining Equipment	\$	477	
Leaching-Processing (direct)	\$	1,839	က္
Leaching-Processing (indirect)	\$	518	2,983
Leaching-Processing Contingencies	\$	344	(1
REE Separation Plant	\$	282	↔
Infrastructure	\$	156	
Other Contingencies	\$	130	
Total Pre-Production Capital Costs	\$	3,766	


Leaching-Processing Capital Costs are 79% of Capex

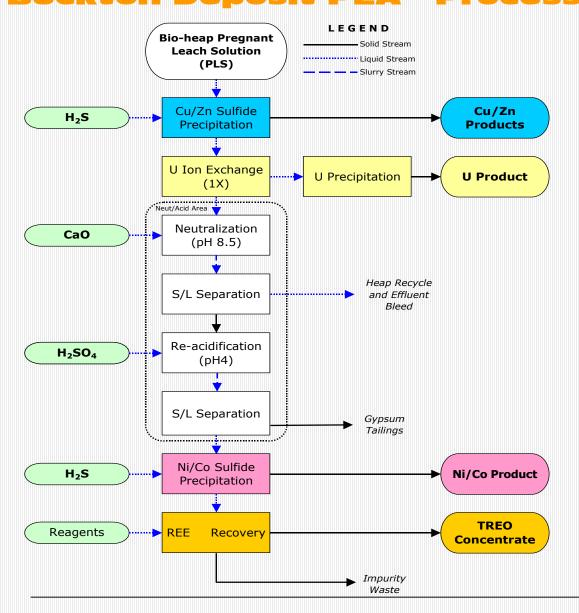
Buckton Deposit PEA - 72MM tpa - Opex



Operating Costs	(\$	/tonne)
Stripping	\$	0.40
Mining	\$	0.80
Leaching-Processing	\$	8.07
REE Separation	\$	0.78
G&A	\$	0.29
Tota	al \$	10.34


Leaching-Processing Operating Costs are 85% of Opex

Reagent Costs are 53%
Of Leaching-Processing Costs



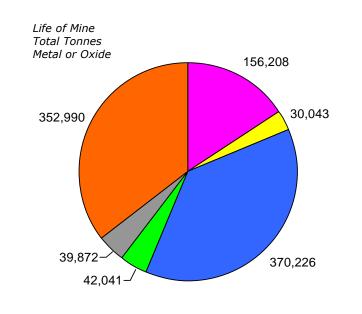
DNI Alberta Black Shale Metals Projects Buckton Deposit PEA - Leaching Flowsheet

DNI Alberta Black Shale Metals Projects Buckton Deposit PEA - Processing Flowsheet

Primary Tailings

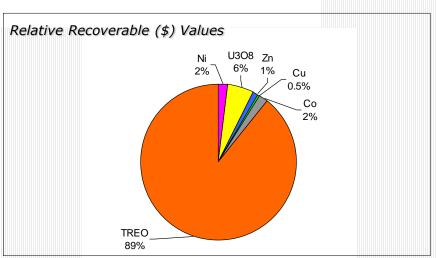
Inert Gypsum

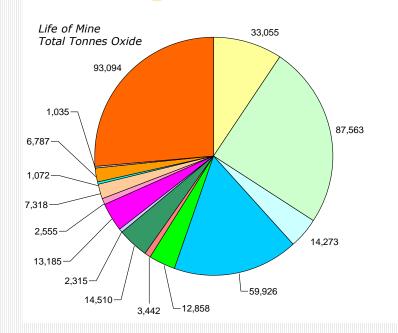
SulfuricAcid + Lime


Bulk of Leaching & Recovery Cost

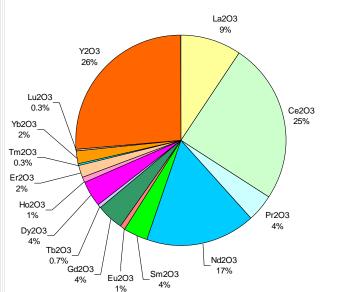

TREO Concentrate

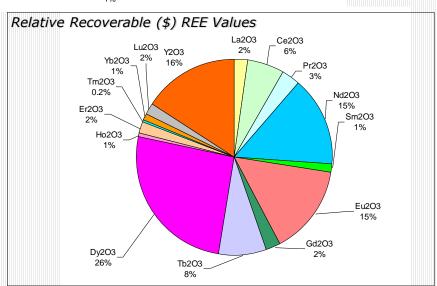
Feed to REE Refining Plant


DNI Alberta Black Shale Metals Projects Buckton Deposit PEA - 72MM tpa - Production Profile


Buckton Deposit

A Significant Potential Long Term Source of Uranium ~ 1 Million lbs per year REE-Y ~ 5,500 tonnes per year TREO and Base Metals ~ 9,500 Tonnes per year


DNI Alberta Black Shale Metals Projects Buckton Deposit PEA - 72MM tpa - Production Profile



Buckton Deposit

A Significant Potential Long Term Source

Heavy REE ~ 2,200 tonnes per year HREO

DNI Alberta Black Shale Metals Projects Buckton Deposit PEA - Upside Enhancements

PEA Identified Opportunities for Strategic Economic Enhancements to Base Case

Some Near-Term Enhancements Achievable with Minimal Additional Work or per Recent Testwork

Eg: Reductions in Reagent Consumption; Reagent Sourcing; Key Operating Efficiencies; Updated Exchange Rate -> Lower Opex to \$7.9/t - Lower Capex to \$3.4 billion

-> Higher NPV6% to \$4.2 billion - Higher IRR to 13.4% - Shorter Payback to 7yrs

Change In Economic Metrics - PEA Base Case 72MM tpa*

				Onc	ai igc	III LOOIIC	,,,,,,	MICHIGO		N Dasc Oc	ioc / Ziviivi ip	u		
	PEA Baseline	Possible Enhancement	Opex		Opex		(Capex	١	IPV6%	١	NPV0%	IRR	Payback
			C	Change	С	hange	C	Change		Change	Change	Change		
				(\$/t)	(00	(000,000	(0	00,000)	(C	(000,000	(%)	(yrs)		
Lower Acid Comsumption	40kg acid pre tonne	20kg acid per tonne	\$	(1.04)	\$	(380)	\$	1,289	\$	4,512	2.5%	-2.2		
Nearer Limestone Supply	\$35/t Lst - Hammerstone	\$25/t Lst - West Shore Atha	\$	(0.32)		-	\$	308	\$	1,327	0.5%	-0.6		
Lower REE Separation Cost	\$10/kg product	\$6/kg product	\$	(0.31)		-	\$	336	\$	1,397	0.6%	-0.6		
Higher USD Exchange Rate	x1.05	x1.10	\$	(0.78)	\$	14	\$	698	\$	3,135	1.1%	-1.1		
		Aggregate	\$	(2.45)	\$	(366)	\$	2,631	\$	10,371	4.7%	-4.5		

PEA Baseline Economics Metrics \$	10.34	\$ 3,766	\$ 1,616	\$ 18,900	8.7%	10.5
Potential Aggregate Enhanced Economic Metrics** \$	7.89	\$ 3,400	\$ 4,247	\$ 29,271	13.4%	6.0

^{*} pre-tax ** some figures may not add due to rounding

Additional Longer Term Enhancements Subject to Broader Testwork or Project Re-Design

Eg: Optimized Mining Schedule; Optimized Leaching Conditions; PLS Pre-Concentration; Shorter Leaching Time

DNI Alberta Black Shale Metals Projects Milestones - Timeline

✓	2007-2008	Property Land Assembly
✓	2008-2009	Data Consolidation & NI-43-101
✓	2009-2010	Demonstrate Collective Metals Recovery Leaching Testwork - BRGM/ARC/DNI
✓	2010-2011	First Drill Program - Infill Buckton & Asphalt Zones
✓	2011	Resource Study - Buckton Zone Initial Maiden Inferred Resource Mo-Ni-U-V-Zn-Cu-Co-Li - NI-43-101
✓	2012	Resource Study – Buckton Zone Supplemental Inferred Resource REE-Y-Sc-Th - NI-43-101
✓	2012	Resource Study - Buckton Zone Cover Rocks - Labiche Shales <i>Mo-Ni-U-V-Zn-Cu-Co-Li-REE-Y-Sc-Th - NI-43-101</i>
✓	2012-2013	Second Drill Program - Expand/Upgrade Buckton Inferred Resource Second Drill Program - In-Fill Drilling Buckton South - NEW ZONE
✓	2012	Resource Study - Buckton Zone Consolidated Inferred Resource Mo-Ni-U-V-Zn-Cu-Co-Li-REE-Y-Sc-Th - NI-43-101
-	2012-2013	Commercialize Heap Leaching Process + Separate REEs Expanded Leaching Testwork - CANMET - 2013
✓	2013	Resource Study - Buckton South Zone Resource - <i>NEW RESOURCE Mo-Ni-U-V-Zn-Cu-Co-Li-REE-Y-Sc-Th - NI-43-101</i>
✓	2013	Resource Study – Buckton Zone Updated & Expanded Resource - Upper+Lower <i>Mo-Ni-U-V-Zn-Cu-Co-Li-REE-Y-Sc-Th - NI-43-101</i>
✓	2013	PEA Scoping Study - Buckton Deposit Ni-U-Zn-Cu-Co-REE-Y - NI-43-101

DNI METALS INC

DNI: TSX-Ven